Maths

(for B.Tech, Integrated B.Tech, B. Sc. (IT)(H)(Bio-Tech), B.Arch)

24

General instructions

- 1. Each section comprises of 15 questions.
- 2. All questions are compulsory.
- 3. Each right answer would be awarded 4 marks.
- 4. There is no negative marking.
- A man standing on a horizontal plane, observes the angle of elevation of the top of a tower to be α. After walking a distance equal to double the height of the tower, the angle of the elevation becomes 2α, then α is equal to

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{12}$ (D) $\frac{\pi}{18}$

2.
$$\sin\left[2\cos^{-1}\left(-\frac{3}{5}\right)\right]$$
 is equal to
(A) $\frac{6}{25}$ (B) $\frac{24}{25}$ (C) $\frac{4}{5}$ (D) -

3. If
$$\cos \alpha = \frac{12}{13}$$
, $\cos \beta = \frac{3}{5}$, $\cos \gamma = \frac{63}{65}$, then $\cos(\alpha + \beta + \gamma)$ is:

(A)1

(B)2

(C)3

(D)0

4. If |z| < 4, then |iz + 3 - 4i| is less than

(A) 4 (B) 5 (C) 6 (D) 9

- If 4a + 2b + c = 0, then the equation 3ax² + 2bx + c = 0 has at least one real root lying between (A) 0 and 1 (B) 1 and 2 (C) 0 and 2 (D) none of these
- The length of the latus rectum of parabola 4y² + 2x 20y + 17 = 0 is (A) 3 (B) 6 (C) 1/2 (D) 0

7.
$$\sum_{r=1}^{\infty} \tan^{-1} \left(\frac{1}{r^2 + 5r + 7} \right)$$
 equals to
(A) $\tan^{-1} 3$ (B) $\frac{\pi}{4}$
(C) $\sin^{-1} \frac{1}{\sqrt{10}}$ (D) $\cot^{-1} 2$
8. $y = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)$, then y
(A) increases in $[0, \infty)$ only (B) decreases in $[0, \infty)$

- $\begin{array}{ll} \text{(A) increases in } \left[0,\infty\right) \text{ only} & \text{(B) decreases in } \left[0\,\infty\right) \\ \text{(C) neither increases nor decreases in } \left[0\,\infty\right) & \text{(D) increases in } \left(-\infty,\infty\right) \end{array}$
- 9. $C_0^2 C_1^2 + C_2^2 \dots (-1) C_n^2$, where n is an even integer is (A) ${}^{2n}C_n$ (B) $(-1)^{n-2n}C_n$ (C) $(-1)^{n-2n}C_{n-1}$ (D) None of these

10. One root of the equation

$$\begin{vmatrix} 3x-8 & 3 & 3 \\ 3 & 3x-8 & 3 \\ 3 & 3 & 3x-8 \end{vmatrix} = 0 \text{ is which of the following?}$$
(A) $\frac{8}{3}$ (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) $\frac{16}{3}$.

11. If
$$x + y = a + b$$
, $x^2 + y^2 = a^2 + b^2$, then $x^n + y^n = a^n + b^n$ is true for
(A) $\forall n \in N$ (B) $n \ge 4$ (C) $n \ge 3$ (D) None of these

12. If
$$1 + |\sin x| + \sin^2 x + |\sin^3 x| + \dots = 4 + 2\sqrt{3}, 0 < x < \pi, x \neq \pi/2$$
, then

(A)
$$x = \frac{\pi}{6}$$
 (B) $x = \frac{\pi}{3}, \frac{2\pi}{3}$ (C) $x = \frac{2\pi}{3}, \frac{5\pi}{6}$ (D) $x = \frac{5\pi}{6}$

For a real number y, let [y] denote the greatest integer less than or equal to y. Then the function $f(x) = \frac{\tan \pi [(x-\pi)]}{1+[x]^2}$ is:

(A) discontinuous at some x

- (B) continuous at all x, but the derivative f'(x) does not exist for some x
- (C) f'(x) exists for all x, but the derivative f''(x) does not exist for some x
- (D) f''(x) exists for all x

14 The value of $\left\{\frac{5^{2n}}{24}\right\}$, $n \in N$ where {.} denotes the fractional part of x, is (A) 5/24 (B) 9/24 (C) 1/24 (D) None of these

15
$$\int \frac{1 + (\sin x)^{2/3}}{1 + (\sin x)^{4/3}} d(\sin x)^{1/3} \text{ is equal to}$$
(A)
$$\frac{1}{\sqrt{2}} \frac{(\sin x)^{2/3} - 1}{\sqrt{2} (\sin x)^{1/3}} + c$$
(B)
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{(\sin x)^{2/3} - 1}{\sqrt{2} (\sin x)^{1/3}} \right)$$
(C)
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{(\sin x)^{1/3} - 1}{\sqrt{2} (\sin x)^{2/3}} \right) + c$$
(D) none of these

B)
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{(\sin x)^{2/3} - 1}{\sqrt{2} (\sin x)^{1/3}} \right) + c$$

Answer Key		
1.B		
2.D		
3.D		
4.D		
5.C		
6.C		
7.C		
8.D		
9.D		
10.B		
11.A		
12.B		
13.D		
14.C		
15.B		